刘鹤与美财政部长耶伦会谈******
新华社瑞士苏黎世1月18日电 1月18日上午,国务院副总理、中美全面经济对话中方牵头人刘鹤与美财政部长耶伦在瑞士苏黎世举行半天会谈。双方围绕落实中美元首巴厘岛会晤重要共识,就全球和两国宏观经济金融形势、应对全球共同挑战等进行了专业、深入、坦诚、务实的交流,会谈富有建设性。
双方认为,世界经济复苏处于关键时刻,双方加强宏观政策沟通协调,共同应对经济金融等领域的挑战,有利于中美两国和整个世界。双方讨论了深化宏观经济和金融领域合作的有关问题。双方认识到可持续金融合作的重要性,同意在双边及联合国、G20和APEC等多边框架下加强合作。双方同意继续支持新兴市场和发展中国家绿色低碳发展和经济转型。中方表达了对美国对华经贸和技术政策的关切,希望美方重视这些政策对双方的影响。
中方欢迎耶伦财长今年适当时候访问中国。双方同意经贸团队在各个层级继续保持沟通交流。
提速近10倍!基于深度学习的全基因组选择新方法来了******
近日,中国农业科学院作物科学研究所、三亚南繁研究院大数据智能设计育种创新团队联合多家单位提出利用植物海量多组学数据进行全基因组预测的深度学习方法, 可以实现育种大数据的高效整合与利用,将助力深度学习在全基因组选择中的应用,为智能设计育种及平台构建提供有效工具。相关研究成果发表在《分子植物(Molecular Plant)》上。
全基因组选择作为新一代育种技术,通过构建预测模型,根据基因组估计育种值进行早期个体的预测和选择,从而缩短育种世代间隔,加快育种进程,节约成本,推动现代育种向精准化和高效化方向发展。
统计模型作为全基因组选择的核心,极大地影响了全基因组预测的准确度和效率。传统预测方法基于线性回归模型,难以捕捉基因型和表型间的复杂关系。
相较于传统模型,非线性模型(如深度网络神经)具备分析复杂非加性效应的能力,人工智能和深度学习算法为解决大数据分析和高性能并行运算等难题提供了新的契机,深度学习算法的优化将会提高全基因组选择的预测能力。
该研究团队以玉米、小麦和番茄3种作物的4种不同维度的群体数据为测试材料,通过创新深度学习算法框架开发了全基因组选择新方法。
与其他五种主流预测方法相比,该方法有以下优点: 可以利用多组学数据开展全基因组预测;算法设计中包含批归一化层、回调函数和校正线性激活函数等结构,可以有效降低模型错误率,提高运行速度;预测精度稳健,在小型数据集上的表现与目前主流预测模型相当,在大规模数据集上预测优势更加明显;计算时间与传统方法相近,比已有深度学习方法提速近10倍;超参数调整对用户更加友好。
该研究得到了国家重点研发计划、国家自然科学基金、海南崖州湾种子实验室和中国农业科学院科技创新工程等项目的支持。
学术支持
中国农业科学院作物科学研究所
记者
宋雅娟
(文图:赵筱尘 巫邓炎)